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AIIIenct-The paeral formulae derived in Part I are developed explicitly for an isotropic matrix containing
spherical iDcluaions, and for cubic polycrystals displayina overall isotropy. Results are sensitive to the
choice of comparison material; subject to certain limitations the self-consistent choice appears aenerally to
be best. For a matrix containing spheres, the stnJcture facton introduced in Part I are evaluated in terms of
similar factors, associated with the radial distribution function. Polycrystals are modelled by a cell
structure, so that two-point statistics are also determined by a single radial function. It is suaested that the
structure factors associated with these radial functions could be inferred for real materials by experimental
study of wave dispersion and attenuation.

I. INTRODUCTION

This paper develops in detail some implications of the general formulae given in the preceding
paper[ll. For ease of reference, this is designated I in the sequel, and equations from it are
given the prefix I. A fairly wide class of isotropic composites is considered which includes, as
special cases, both matrix/inclusion composites and polycrystalline aggregates. The principal
simplifying feature displayed by this class is that the two point probabilities Prs are isotropic.
This, coupled with the choice of an isotropic comparison material, allows all the integrals given
in 1 to be evaluated explicitly, except for those that define the geometric structure factors A~.,

A", which depend upon the detailed form chosen for the two-point probabilities P".
Two examples are considered particularly. The long-wavelength wave speeds, and the

corrections for dispersion and attenuation Q', Q, are worked out for a matrix containing
spheres and for a polycrystalline aggregate of cubic crystals. Detailed results are given for glass
spheres in an. epoxy matrix, for which experimental results have been obtained by Kinra et
al.(2l, and for polycrystalline copper, alpha-iron and nickel. The long-wavelength wave speeds,
and the perturbations Q, Q', are all sensitive to the choice of comparison material; it is
suggested that the self-consistent choice for Lo is generally likely to be best.

2. GENERAL IMPLICATIONS OF ISOTROPY

The results given in Paper 1 can be made progressively more explicit, as more simplifying
features are introduced. Suppose, first, just that the two-point probabilities, P.,(x', x), in
addition to being translation-invariant, also have isotropic form, so that they depend upon
Ix - x'i only. Then, as shown in [3l, the constants A" given by (I, 4.6) reduce to the form

A" = P(p,a" - PrP.),

the constant tensor P having components

(2.1)

(2.2)

This simplification occurs because, when PI' is isotropic, the static kernel 1 behaves like P
times a delta-function, with P representing the integral of lover a sphere of any radius,
centred on the origin. When A" take the form (2.1), equations (I, 4.2) have the explicit solution

Tr =Sr(e),

685

(2.3)
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where
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Sr = (Lr- Lo)(I +P(Lr- Lo>rl{~ P,(I +P(L, - Lo>rl}-I. (2.4)

Correspondingly, the Hashin-Shtrikman estimate (I, 4.8) for the tensor of overall moduli
becomes

i = ~ PrLr(I +P(Lr- Lo>rl{~ P,[I +P(L, - Lo>rl} -1. (2.5)

The result was first given at this level of generality by Walpole[4].
The other simplifying features that follow from the assumption of isotropy of PI' are that

the integrand in· the definition (I, 4.17) of A" depends upon the radial variable alone and,
correspondingly, (I, 4.16) shows that A;r(E) is independent of the direction of E. Thus, if Eis not
a unit vector,

(2.6)

where, on the right side of (2.6), A;r represents the value of A~r when I~I = I, and so is
independent of ~. The derivatives that appear in (I, 4.19) and (I, 4.20) are now easy to evaluate
explicitly:

(n.V~)A;r(E) = - (~~) A;"

(n.V~)2A;r(E)= {~I~IV -dr}A;..

(2.7)

(2.8)

The assumption of isotropy of PI' does not by itself imply overall isotropy of the composite,
since all of the L r may still be anisotropic and display preferred orientations. If, however, the
L r are chosen so that the composite is elastically isotropic, it is sensible to choose the moduli
Lo of the comparison material to have isotropic form. In this case, Lo is specified by a bulk
modulus 1<0 and a shear modulus ILo and it is convenient to employ a symbolic notation
introduced by HiII[5]:

Lo= (31<0, 2ILo).

The tensor P is correspondingly isotropic; completing the algebra gives

(2.9)

(2.10)

Then, if all of the phases of the composite are isotropic, so L, = (31<" 2IL,), eqn (2.5) gives

i = (3K, 2Ji),

where

(2.11)

Expressions for K, Ji appropriate to a polycrystal are given later.
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The low-frequency dispersion relation (I, 4.12) now shows that the composite will support
longitudinal waves, with wave speed

(2.13)

and shear waves, with wave speed

(2.14)

The associated displacements (U}H have the form

(2.15)

where mH, N = 1, 2, 3 are orthonormal, with

(2.16)

and A is an arbitrary amplitude.
The perturbations Q, Q' to the low-frequency dispersion relation involve the polarizations

T" 17', and the constants A~~) ... ErI, defined by eqns (I, 4.25-4.31). The constant tensors Drs. E"
were worked out, in a slightly different context, by Willis[6]. They are isotropic, as are also
A~7") and C,,; the remaining tensors are expressible in terms of isotropic tensors, contracted
with n. The results are listed.

A~~) = A(U)A~" A~7") = A(....)A~" B" = BA~"

C" = CA~" D" = DA." E" = EA.., (2.17)

where

A(-) - (1 1 ( 1 +2)) (2.18)- 617'Poao·' 1017'Poao· ;;: 3 '

D - (1 1 ( 1 +2)) (2.19)- 1217'Poal2017'Poa05 ;;( 3 '

(C)pi =~(-:~~ + 1)8pj, (2.20)
17'Poao 0'0

(E)pj = 12 1 j (~+ 1)8p;. (2.21)
17'PoaO 0'0

In (2.18) to (2.21), ao = [(KO +4".oI3)/Po]1/2 is the speed with which longitudinal waves would
travel in the comparison material and 0'0 = /3o/ao, where /30 = (".0/Po)1I2 is the corresponding
shear wave speed. The remaining constants are expressible in the forms

(2.22)

where

(2.23)

and

(2.24)
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This completes the assembly of the constants relevant to all isotropic composites. Particular
cases are disucssed in the sections that follow.

3. A MATRIX CONTAINING SPHERICAL INCLUSIONS

Consider first an isotropic matrix containing a distribution of spherical inclusions. The
inclusion phase is labelled 1, so that the inclusions have moduli L1=(3KIJ 2~1), while the matrix
has moduli L2= (3K2, 2~2)' The overall moduli i have already been given by (2.11), (2.12) and
so attention is focussed upon the calculation of Q, Q'. The probabilities PrJ P,. satisfy the
relations

(3.1)

and these allow the "structure factors" A,., A~. to be expressed in terms of All, Ail. It follows,
in fact, that eqns (I, 4.41) and (I, 4.42) reduce to

where

Q' = - ~II [( '1'1 - 'T2)(A (ldt) + l A<..... ')( '1'1 - '1'2)
mL(n)m

+ 21'( '1'1 - 'T2)B( 1Tt - 1T2) +'Y2
( 1T) - 1T2)C(1T1 - 1T2)),

AII 'Y 2w
Q =- _ [('Tt - 'T2)D( '1') - '1'2) + (1T1 - 1T2)E(1Tt - 1T2)),

mL(n)m

l' = wlk

(3.2)

(3.3)

(3.4)

and k, m take the values kN, mN appropriate to the branch of the dispersion relation under
consideration. From (2.3), now,

(3.5)

where

(3.6)

and it can be shown, either from (2.4) or directly from eqns (I, 4.6), that

(3.7)

or, explicitly,

From (I, 4.3),

(3.9)

This completes the specification of the tensors that appear in (3.2), (3.3). They are easy to
manipulate, on account of their isotropic structure and, furthermore, the wave normal n may be
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taken to have components (1,0,0), without loss of generality. Correspondingly, mit m2 have
components (1,0,0), (0, 1,0) respectively and there is no need to consider m3.

There remains the task of evaluating the structure factors All, Ah. This is complicated
slightly by the fact that a distribution of inclusions is most naturally described in terms of a
number density n. and a pair distribution function g(x) (which, for the case being considered,
depends upon Ixl only and is usually called the radial distribution function). If the inclusions all
have radius a, the number density RI is related to PI by

(llO)

and the pair distribution function is related to the probability density P(x Ix') for finding an
inclusion centred at x, given that a different inclusion is centred at x', by

P(x Ix') = n,g(x - x'). (3.lt)

In the present case, therefore, g(x) = °when Ixl < 2a, since inclusions cannot overlap, and
g(x)-+ 1 as Ixl-+ co, since no long-range order is assumed.

In preparation for evaluating All, Ailt it is noted that Pll(x,O), the probability that both x
and °lie in an inclusion, is given as

P ll(x,0)=n,v(x)+RI2
( dx ' ( dx"g(x"-x ').

18(0. a) J8(X.CI)
(3.12)

where B(x, a) denotes the sphere of radius a, centred at x and vex) denotes the volume of the
intersection of B(O, a) and B(x, a). The first term on the right side of (3.12) is the probability
that x, 0 lie in the same inclusion and the second is the probability that they lie in different
inclusions. The structure factor All now follows as

All = Rl f vex) dx + nl
2fdx ( dx' ( dx"{g(x"- x') - lJ· (3.13)

18(0. a) 18(x.al

The first integral on the right side of (lI3) is elementary and the second can be reduced by the
change of variable x" = x' +u, to give the result

where

A = 1+ nl fdu{g(u)-l];

the factor A appeared in {6]. Evaluation of Ail is less straightforward; the result

A' - 411'a
2
PA'11--5- I ,

where

I 13 Iha (OO
A = l+mPI+-6-n. 10 rdr[g(x)-lJ.

(3.14)

(3.15)

(3.16)

(3.17)

relies upon the fact that g(x) depends upon r = Ixl only. The factor A' is plotted against
concentration PI in Fig. 1 for the "well-stirred" distribution defined by

55 Vol. lB. No. ~D

g(x) =0, Ixl < 2a

=1, Ixl>2a (3.18)
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Fig. I. Plot of the structure factor A' against concentration Pi, for the "well-stirred" approximation (----)

and for the Percus-Yevick approximation for the radial distribution function (--).

and for the Perkus-Yevick hard sphere approximation of statistical mechanics [7]: for the latter
model, the Laplace transform of rg(r) is known explicitly[8] and A' follows from its small
argument expansion. Corresponding plots of A were given in [6].

The exact predictions of the formulae that have been presented depend upon the choice of
comparison material. In [6], the comparison material was identified with the matrix and the
quasicrystalline approximation of Lax [9] was applied to close the hierarchy associated with the
operator eqns (I, 2.8, 2.9). With this choice of comparison material, the present formulation gives
estimates for i and Q that agree precisely with the corresponding results in [6] (in which the
symbol Q had a slightly different meaning). The real perturbation Q' was not calculated in [6],
however. The most significant advantage of the present scheme, in addition to its variational
foundation, is that it allows other choices of comparison material. In particular, Lo may be
chosen so that L, - Lois positive semi-definite and p, - Po ~ 0 for each r, when the associated i
is the Hashin-Shtrikman lower bound, or so that L, - Lo is negative semi-definite and p, - Po :so;

o for each r, when i is the Hashin-Shtrikman upper bound [10]. Alternatively, Lo may be
chosen self-consistently, so that

i(Lo) = Lo. (3.19)

It was shown in [3] that this prescription (which can also be applied for any two-point
probabilities PrJ) reproduces the self-consistent estimates formulated by Hershey[l1], HiII[12]
and Budiansky [13]. It is natural to associate with (3.19) the choice

(3.20)

Results corresponding to these three choices of comparison material are displayed in Figs.
2-4 for a composite comprising an epoxy matrix with embedded glass spheres, which has been
studied experimentally by Kinra, Petraitis and Datta[2]. For this material, the "lower bound"
and "upper bound" estimates for i are produced by identifying the comparison material with
the matrix and the inclusions, respectively.

Figure 2 shows (in unbroken lines) plots of long-wavelength estimates Ii for the speed of
longitudinal waves, against volume concentration of inclusions. The material properties

KI = 43.09, ILl = 25.98 GPa, PI = 2.47 g cm-J

KZ = 5.205, ILz = 1.482 GPa, pz = 1.18 gcm-J

were adopted, to conform with [2]. The upper bound curve (Lo = L I ) and the lower bound curve
(Lo = L z) are rather far apart, as would be expected for a composite with such large differences
in moduli. The self-consistent estimate, obtained by choosing Lo = i, lies between the bounds
and probably provides the best of the three estimates for Ii up to moderate concentrations,
though the observation[13] that the self-consistent estimate for the shear modulus of an
imcompressible matrix containing rigid spheres becomes unbounded at a volume concentration
0.4 might suggest. for the present composite, that the self-consistent Ii is an overestimate at
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Fig. 2. LolII"waveJenath estimates Ii (unbroken lines) of the longitudinal wave speed in an epoxy matrix
containing &Jus spheres, plotted aaainst volume concentration spheres, for different choices of comparison
material. The broken lines show estimates allowing for the perturbation Q', when the spheres have radius
150 jLm and conform to Percus-Yevick statistics, and the frequency of the wave is 0.8 MHz. Experimental

points taken from [2] are also shown. Results are normalized to the wave speed Ol of the matrix.

such concentrations. Also displayed on Fig. 2 are corrections due to dispersion: the broken
lines represent estimates a' of phase velocities, allowing for the first-order correction Q'
through the formula

a' - li(l- Q'/2). (3.21)

The correction term Q' is proportional to w2 and also depends upon the radial distribution
function g(x) through the factor A'. The corrections shown assume a frequency of 0.8 MHz and
a Perkus-Yevick distribution of spheres, all of radius a = 150 ,...m. The results demonstrate a
tendency for phase velocity to decrease with frequency. Experimental points, taken from a
figure in [2], are also shown; the composite that was tested in [2] had the properties assumed in
the calculation except, of course, that its radial distribution function was unknown. Comparison

.AT.I~
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Fig. 3. (a) Estimates of the correction factor Qi, plotted apinst concentration of spheres, for the
composite described in Fig. 2. (b) Estimates of the correction factor Q~, plotted against concentration

spheres, for the same composite.
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Fig. 4. (a) Estimates of the correction factor QI, plotted against concentration of spheres. (b) Estimates of

the correction factor 02, plotted against concentration of spheres.
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between theory and experiment tends to support the self-consistent choice of Lo. Correspond
ing results have been obtained for shear waves but these are not displayed.

It has been suggested [14, 15] that the radii of inclusions might be estimated from measure
ments of dispersion and attenuation. The formulae given in this work demonstrate that, in fact,
such measurements are sensitive to g(x) as well as to inclusion size and concentration.
Normalized plots of the corrections Qi for longitudinal waves and Qi for shear waves are
shown against concentration, for the three choices of comparison material, in Figs. 3(a, b)
respectively. The assumed material properties are the same as for Fig. 2, including the
Percus-Yevick g(x). Corresponding plots of Qt, Q2 are shown in Figs. 4(a, b). The estimates
vary with choice of comparison material but we would speculate that those obtained with the
self-consistent choice are the most realistic.

4. POL YCRYSTALS

This section considers a particular "cell" model for a polycrystalline aggregate. In general, a
"cell" model is defined by subdividing the space occupied by the material into cells, in such a
way that the probability that points x, x' lie in the same cell is p(x, x'). Each cell is then assigned
a label r, with probability P,., independently of the labels assigned to other cells. It follows then
that

P,,(x, x') = P,8"p(x, x') +PrP.(l- p(x, x'». (4.1)

For the case under consideration, the distribution of cells is taken to be statistically uniform
and isotropic, so that p(x, x') in fact depends upon Ix - x'I only. Also, each cell is to be regarded
as a crystal grain, composed of material whose elastic moduli, measured relative to a chosen set
of crystallographic axes, are L e• The label r now defines the orientation of the crystallographic
axes and is more appropriately replaced by g, a member of the rotation group 'fJ. The moduli Lg

of "phase g" are thus obtained by applying the rotation g to Le• The rotation g may be
parametrized by Eulerian angles (6, t{>, 1/1). Isotropic polycrystals are considered, for which all
rotations g occur with equal probability, so that (4.1) is replaced by the density

Pgg·(x, x') =b S(g - g')p(lx - x'l)+ (8;2)2 (1- p(lx - x'I»· (4.2)

In terms of the Eulerian angles (6,1/>,1/1) the element dg takes the form

dg = sin BdB dl/> dl/l, (4.3)

so that f'§ dg =811'2. All previous expressions involving sums become replaced by corresponding
integrals over 'fJ.
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The tensor of overall moduli i follows as such a limit of (2.5), in which the tensors 1.0, P
are isotropic. Consider the term

. I f I
L = W j" dgL,[I +P(L, - LoW· (4.4)

This is isotropic and so is characterized by bulk and shear moduli R, p. which, furthermore, are
determined by the invariants

Liiltlt =9R, Lijij =3" + lOP.. (4.5)

The corresponding invariants of the integrand in (4.4) are, of course, independent of g and so
may be evaluated by replacing L, by Le, whereupon the integration over 'Ii becomes trivial. The
"continuous r" analogue of the inverse operator that appears on the right side of (2.5) may be
treated similarly, and i follows without performing any explicit integration over 'Ii. All
"phases" g of the polycrystal have the same density, p say, so that p=p and, with po set equal
to p, there are no momentum polarizations.

As a first step towards evaluating the perturbations Q, Q', it is noted that the structure
factors A", A~. become replaced by corresponding densities

where

Agg.= A[~ 6(g - g') - (8;2)2J.

A~g = A'[~ 6(g - g') - (8;2)2J.

A = 4'71' 10" p(r)r2 dr,

A' = 2'7T fo''' p(r)r dr.

(4.6)

(4.7)

(4.8)

(4.9)

The factors A, A' represent, respectively, the expected volume of a cell and the expected area of
its intersection with a plane passing through a specified point, both conditional upon the cell
containing that point.

Then, since '71', = 0, eqn (I, 4.41) gives, with (2.17),

Q' = - A' {6 f dg'T (A(kk) +y 2A(.... )'T
mL(n)m 8'71' j" ' g

- T(A(kk) +y2A(....»T},

where 'Tg is related to (e) by (I, 4.7), with r replaced by g, and

Similarly, from (I, 4.42) and (2.17),

Q - Ayw {I {d Dr -n=}- - mL(n)m g;z j" g'T, g - 'TlJf .

(4.10)

(4.11)

(4.12)

Equation (4.12) will be considered first, because it is simpler than (4.10). The integral over <§

may be expanded to the form

(4.13)
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The integrand is insensitive to rotations and it simplifies upon application of the rotation g-I.
Then, the tensor S,DS, becomes SeDSe, D being isotropic, while the vectors m, n become
replaced by the rotated vectors g-Im, g-ln. Therefore, since the integration is over the whole of
Cfj in any case,

(4.14)

That is, the average may be taken instead over all wave orientations, relative to fixed
crystallographic axes.

The integral over Cfj in (4.10) may be transformed similarly, but with the complication that
the tensor A(kit) itself depends upon n. Thus, the integrand that results involves products of up
to six components of g.

Results will be presented for cases in which Le has cubic symmetry, so that the relation
u = Lee may be given in the form

(4.15)

with equations for other components of u obtained by cyclic permutation of the suffixes. With
the notation

(4.16)

introduced by Walpole[l6], products and inverses can be worked out directly, after which,
application of the prescription (4.5) to the terms from which i is composed gives

K= Ke,

• _ 30j.Lej.L~(KO + 2j.Lo) + (2j.Le + 3j.L~)j.Lo(9KO + 8j.Lo)
j.L - (l8j.Le + 12j.L~)(Ko + 2j.Lo) + 5j.Lo(9Ko + 8j.Lo) .

(4.17)

(4.18)

The natural choice for KO in (4.18), is KO =K e• The choices j.Lo =j.Le or j.L~ yield the Hashin
Shtrikman bounds[17] while the self-consistent equation for ii, obtained by setting j.Lo= ii, is
cubic, differing from the original quartic of Hershey[l1] by a factor (8ii +9KC>.

Now consider the evaluation of Q, from (4.12). First, from (4.11) and (I, 4.7),

where

T= S(e),

- I ( -
S =8? J~ dgSg =L - Lo,

(4.19)

(4.20)

from (1,4.8). This is isotropic and the term TDT in (4.12) follows immediately. The integral over
Cfj in (4.12) is best evaluated from (4.14). Using "cubic" notation, it follows from (2.4) that

where

Therefore,

= (j.Le - j.Lo)[30j.L~Kc + 2j.Lo) + 5JLo(9Kc + 8JLo)}
j.Ls (lSj.Lc + 12JL ~)(Kc + 2j.Lo) + 5JLo<9Ke + 8j.Lo) ,

, = (tL~ - j.Lo)[30lLc(Kc + 2ILo) + 5ILo(9Kc + 8ILo)]
ILs (lSj.Lc + 12IL~)(Kc +2JLo)+5JLo(9Kc +SJLo)'

(4.21)

(4.22)

(4.23)

(4.24)
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(4.25)

For longitudinal waves. now. k = kit m = m. = n so that (e)i; = - ik,nin;. and 'Y = ti. Cor
respondingly,

(e)(ScDSc)(e) = - k,2 1
3
6 P,D{p,,2(n,4 +n24+n)4) +(3(p,~)2 - p,,1(n,2n22+nln)2 +nln,2)}

(4.26)

which gives. upon averaging over all directions n.

(4.27)

Hence. QIt the attenuation factor for longitudinal waves. is

(4.28)

the circular frequency w having been eliminated by using w =tikI. The corresponding result for
shear waves may be worked out similarly; it is

(4.29)

Evaluation of the factors Qf.l falls into two parts: one. associated with the isotropic part of
A(kt) + 'Y2A(.... l. follows precisely the pattern established above while the other. associated with
the term A* in (2.25). involves the average of (Tijnj)(Tiqnq ). The results are

(4.30)

for longitudinal waves and

(4.31)

for shear waves.
The task that remains is to evaluate the structure factors A. A', which depend upon the

function p(r) that appears in (4.2). First. for the function

(4.32)

which was introduced by Pekeris [18].

(4.33)
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Table 1. The structure factors A, A' for tbe four
models, normalized so that A, the expected volume of

the cell containina tbe origin, is 4'ITb 3/3

Model

A
A'

2 3 4

Table 2. Moduli and densities of copper, alpha-iron and nickel

Material Kc(GPa) /L«GPa) /oLi(GPa) p(gcm-3
)

Cu 136.7 23.5 75.4 8.95
a-Fe 173.0 48.0 116.0 7.92

Ni lSO.4 49.6 124.7 9.04

Table 3. Estimates of wave speeds. with comparison materials cbosen as Hasbin
Shtrikman lower bounds (H-S lower), self-consistently (S-C) or Hasbin-Shtrikman

upper bounds (H-S upper)

Longitudinal wave speed Ii (mm//oLs) Shear wave speed ~ (mm/p.s)

Material H-S lower SOC H-S upper H-S lower SoC H-S upper

Cu 4.703 4.738 4.758 2.266 2.320 2.350
a-Fe 5.949 5.972 5.986 3.187 3.219 3.239

Ni 5.699 5.724 5.740 3.065 3.100 3.122

Table 4. Estimates of the perturbations QIt Q2, using the Pekeris
model for p(r)

QI/(k.b)3 QI/(k,b)2

Material Cu a-Fe Ni Cu a-Fe Ni

H-S lower 0.316 0.132 0.148 0.101 0.051 0.057
SoC 0.111 0.061 0.066 0.052 0.031 0.034

H-S upper 0.054 0.035 0.037 0.032 0.022 0.024

Table 5. Estimates of the perturbations 02. Qi, using the Pekeris
model for p(r).

Q2/(k2b)l Qi/(k2b)2

Material Cu a-Fe Ni Cu a-Fe Ni

H-S lower 0.114 0.053 0.060 0.076 0.039 0.043
SoC 0.041 0.025 0.027 0.040 0.024 0.026

H-S upper 0.020 0.014 O.QlS 0.025 0.017 0.018

Next, for the function

employed by Chernov [19],

(4,34)

(4.35)

These simple expressions are useful for illustrative purposes but they are not associated with
any known cell model. Two further examples are therefore considered, for which the functions
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p(r) are obtained from explicit stochastic models. They have both been described by
Gilbert [l0]. In the first of these, points are distributed throughout three-dimensional space,
according to a Poisson process of intensity A, and the space is then partitioned into the convex
Dirichlet regions of the points. The Dirichlet region surrounding a given Poisson point consists
of the set of points lying nearer to this than any other Poisson point. Gilbert showed that for
this model

(4.36)

where V(R, 8) is the volume of the union of two spheres, one at the origin, with radius R, and
the other distant r from the origin, with radius (R 2+r2-2Rrcos 8)1/2,8 being measured from
the line of centres. For this model, the Poisson points can be thought of as seeds from which
cells grow, uniformly in all directions, until they meet at mutual interfaces. The final model,
which was introduced by Johnson and Mehl[21], is of the same type, except that a Poisson
process on R3x [0, 00] is considered, which marks the Poisson point Pi with a birth time ti. It
nucleates a cell, therefore, only if it falls in a region not already covered by a cell at time ti. The
Dirichlet cells of the simpler stochastic model are convex polyhedra but those of the Johnson
Mehl model are only star-shaped. Gilbert[20] gives an expression for p.(r) for the Johnson
Mehl model, in terms of a multiple integral. It is more complicated than (4.36) and is not
repeated.'

The structure factors A, A' have been evaluated by Gilbert[20] for each of the Poisson
models. The results for all four models are summarized in Table 1 in which, to facilitate
comparison, the factor A has been normalized as 4'ITb 3/3: this fixes the lengths a in the first two
models and the intensities of the Poisson processes in the other two.

As specific examples, the long-wavelength wave speeds Ii, t3 and the corrections Q', Q
giving dispersion and attenuation have been calculated for polycrystalline copper, alpha-iron
and nickel. The relevant material properties (taken form [22]) are shown in Table 2. Table 3
gives three estimates for each of a, ~, corresponding to choices of comparison material which
give, respectively, the Hashin-Shtrikman lower bound, the self-consistent estimate and the
Hashin-Shtrikman upper bound for the overall shear modulus. The perturbations Q, Q' are
proportional to A, A' respectively and so depend upon the model chosen for p(r). Table 4 shows
estimates of the perturbations Q.. Qi for longitudinal waves, for each choice of comparison
material and for the Pekeris form (4.32) for PI(r). Table 5 gives corresponding estimates of the
perturbations Q2, Q2 for shear waves. The results are normalized to b (where A = 4'ITb3/3); in
this form, results for Q are independent of the model, while results for Q', for models other
than I, are obtainable by scaling, using Table l.

5. CONCLUSIONS

Implications of the general formulae in Paper I have been developed for a range of materials
displaying overall isotropy. The predicted attenuation and dispersion are sensitive to the choice
of comparison material; limited comparison with experimental results tends to favour the
self-consistent choice of Lo, though for extreme cases, such as a matrix with a high density of
rigid inclusions, or a highly porous medium, the self-consistent Lois known to be unsatisfactory
and some other choice would be needed.

The analysis shows that attenuation and dispersion depend upon the structure factors A', A
and it should be possible to determine these factors experimentally. For a matrix-inclusion
composite, the factors depend upon the radial distribution function as well as the mean
inclusion radius and concentration, so that the situation is a little more complicated than was
envisaged in [14, 15].
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